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Abstract - Science missions and instruments continue to produce volumes of useful data 
and scientists depend on the data systems and tools that archive this data as a means to 
access and analyze it. These existing legacy systems do not interoperate well, and 
scientists must access each data system and its corresponding science data independently 
through tools that have been custom-built for the particular science data system or 
mission. The Object Oriented Data Technology task is working on the distributed 
resource location service, which will allow location and exchange of geographically 
distributed data. Advances in Internet and distributed object technologies provide an 
excellent framework for sharing data across multiple data systems. The Extensible 
Markup Language (XML) and the Common Object Request Broker Architecture 
(CORBA) provide support for electronic data interchange (EDI) between heterogeneous 
data sources. CORBA provides the over-the-wire exchange of XML-based profiles that 
contain descriptive information of science products archived at remote data systems. 
This paper discusses a framework for data system interoperability that will not only 
benefit space science, but provide a cross-disciplinary solution for a next generation data 
system architecture. 

I. Introduction 

Science  data  has  continued  to  devolve  into  a 
large  set of highly  fragmented  distributed  data 
systems.  These  systems  are  heterogeneous and 
geographically  distributed  making 
interoperability and integration  difficult. 
Furthermore,  correlating  science  data  across  a 
multi-disciplinary  environment  is  even  more 
challenging.  The  Object  Oriented  Data 
Technology  task at the  Jet  Propulsion  Laboratory 
is currently  researching  a  distributed  framework 
that will allow  for  dataset  resources  and  products 
to be exchanged  based on a  set of distributed 

systems  called  the  distributed  resource  location 
service. 

The  distributed  resource  location  service  enables 
applications  to  locate  geographically  distributed 
science  data in heterogeneous  data  systems 
without  knowing  which  data  systems  and 
catalogs  to  search,  or what the  interfaces  are  to 
each  catalog.  The  resource  location  service 
manages  a  hierarchical  conglomerate of dataset 
resource  definitions  that  allow  for  data  products 
residing in distributed  data  systems  to  be  located. 
The  intent of the  hierarchical  view  is  that  clusters 
of data  systems may be  organized  as  sub- 
components of larger  communities.  For 
example, NASA’s Office of Space  Science  has 
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hundreds of data  systems  each  containing 
numerous  datasets  and  catalogs  that  make  up the 
multi-disciplinary  communities of planetary, 
astrophysics  and  space  physics  science  data. 
Within  each  community,  there  can  exist  smaller 
communities  that  can  point  to  data  systems, 
products, or  even  other  communities.  Once  data 
is  located,  the  service  converts  it  to  a  neutral 
format  to  enable  correlation  across  science  data 
systems. 

11. Architecture 

The  resource location  service  has  several 
architecture  objectives.  These  include 
(1) requiring  that  individual data  systems  be 
encapsulated  to hide  uniqueness; (2) requiring 
that  communication  between  distributed  services 
use  metadata  for  data  interchange; (3) defining  a 
standard data  dictionary  based  on  a  metadata  for 
describing  data  resources;  and (4) providing a 
solution  that  is  both  scalable  and  extensible. 

Figure 1:  Distributed profile architecture. 

The  resource  location  service  centers  around an 
architecture  based  on  a  directed  graph'  (or 
digraph) of resources  that  are  traversed  in  order 
to  satisfy  a  query. Profiles-sets  of resource 
definitions-describe  nodes of the  digraph. 
Profiles may point  to  other profiles  thus 
representing  arcs of the  digraph. A profile  is 
essentially  a  metadata  description of the 
resources  known  at a node  in  the  distributed 
framework.  These  resources  are  either  data 

A directed  graph  consists of a  set of vertices V 
and  a set of arcs E.  Vertices  are  also  called 
nodes or  points;  Arcs are also  known  as  directed 
edges  or  directed lines. 

products  archived  by an integrated data  system, 
or  definitions of other  profile  nodes  that  manage 
metadata  about  other  data  systems  that  can 
further  satisfy  the  query.  Figure 1 depicts an 
example of a  digraph of profiles  that  represents  a 
set of distributed  data  systems. 

The  resource  location  framework  consists of 
three  components  that  include  a  query  service 
component,  a  profile  service  component,  and  a 
product  service  component.  The  components 
provide  the  functionality  necessary  to  traverse 
the  profile  digraph  and  return  products  for 
located  resources. The  query  component 
executes  concurrent  queries  to  the  profile  and 
product  components  in  order  to  satisfy  a  query. 
Profile  components  manage  a  set of profiles  (or 
resource  definitions)  for  a  particular  node  in  the 
digraph.  The  product  component  then provides 
the  translation  necessary  to  map  a  product 
retrieved from a  data-system-dependent 
environment  into  a  neutral  format  suitable  for 
exchange  between  systems. 

Each  node of the  architecture  exchanges  data 
based  on  metadata  definitions. These definitions 
define  how  data  is  queried  and  returned,  as well 
as how  the  profiles  are  encoded  at  each  node. 
Product  components are similar  to  profile 
components  in  that  they  also  represent  a  set of 
distributed  nodes. A product  node  wraps  the 
interface  to  one  or  more  data  systems so as to 
sanitize  the  data  and  map  it  into  a  standard 
format  that  can  be  exchanged  across  the 
architecture. This  allows  heterogeneous  data 
systems  to  be easily  added  without  changing the 
way their  data  is  stored. 

The  component  architecture  described  lends 
itself  naturally  to  a  distributed  object 
implementation. We used  the Common  Object 
Request  Broker  Architecture  (CORBA)  to 
provide  the  distributed  object  framework  and  to 
communicate  and  exchange  data  in 
heterogeneous  environments  using  the  Internet 
Inter-ORB  Protocol  (IIOP).  This  activity  is 
currently  using  an  implementation of the 
CORBA 2.0 standard  from  Object  Oriented 
Concepts  known  as  Orbacus.  Each  profile  and 
product  server  node is defined by a separate 
object  name  (or  node  name).  CORBA  allows  for 
nodes  to  be located  based on the CORBA 
naming  service  that  is  included  in  the  Orbacus 
implementation.  The naming  service  allows 
objects  that  can  satisfy  the  query  to  be  specified 
by name so that  profiles  can  identify  other 
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profiles  or products in their  metadata  definitions. 
This  enables  integration of the  described  nodes. 

Figure 2: Component  framework 

Each  component of the  architecture 
communicates  with  other  components  using  the 
Extensible  Markup  Language  (XML)  for  the  data 
content  running  on  top of the  CORBA 
implementation.  One of the  critical  requirements 
of this  architecture is to  provide  interoperability 
solutions  without  having  to  change  the 
implementation of each  data  system.  Our 
architecture  accomplishes  this  goal  by 
encapsulating  each of the  individual  data  systems 
and  then  using  standard  metadata  definitions 
based on XML for  interoperability. This  allows 
various  implementations  ranging  from  the  use of 
relational  and  object  database  management 
systems  to  implementations  that  use  flat  file  and 
home-grown  databases  for  cataloging  and  storing 
data  products  to  exchange  information  using 
XML  metadata definitions. 

We deployed  the  resource  location  service 
entirely  in  the  Java  programming  language  along 
with CORBA and  XML.  Java  allows  for  the 
implementation of the  object  architecture  and 
allows  the  framework  to  be  easily  extended  to 
integrate  new  data  systems.  Java  is  particularly 
useful  in  the  design of the  product  service 
component  which  allows  new  servers  to  be 
quickly  instantiated by loading  additional 
product  translation  objects at run  time.  This will 
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be  explained in further  detail  below. 

One of the  goals of this  architecture  is  to  provide 
a  standard  application  programmers'  interface 
(API)  that will allow  for  generic  science  analysis 
tools  to  be  written  that  can  plug  into  the 
architecture  to  retrieve  and  correlate  data  from 
multiple data sources. This  is  accomplished 
using an n-tier  architecture.  Such  architectures 
split  the  traditional  client-server  model  into  three 
layers:  a  user  interface  layer,  a  domain  logic 
layer,  and  a  storage  layer.  Abstracting  the 
implementation  away  from  the  client  allows  for 
the  infrastructure  to  evolve  without  breaking  the 
tool  interfaces.  It  also  moves  the  domain 
intelligence  to  the  middleware  components 
which  removes  the  constraint  that  the  tools  need 
to  have  the  knowledge of the  protocol  and 
location of data  systems  in  order  to  query  and 
retrieve  data  from  it.  Finally,  the  n-tier 
architecture  also  allows  the  framework  to  plug  in 
additional  services. 

In Figure 2 the  framework  shows  general  objects 
that  fit  into  the  framework  along  with  bridges  to 
other  services  that  could  be  potentially  added. In 
this case, a  navigation  service  could be  added  to 
allow  for  images of Jupiter,  a  constantly  moving 
target, to  be found  based  on  metadata  that 
describes  the  right  ascension  and  declination 
(RA/DEC) of an  image.  Also  since  the 
navigation  service  performs  coordinate  system 
transformation,  this  addition  illustrates  how  a 
software  component  can  use  metadata  to  further 
increase  interoperability  between  domains. 

Figure 3 illustrates the  functioning of one  profile 
service  node  within  the  resource  location 
framework.  The  profile  server  node is managing 
resource  profiles from  multiple  disciplines, 
namely  the  Palomar  Testbed  Interferometer 
(PTI),  an  astrophysics  system,  and  the  Planetary 
Data  System  (PDS). A candidate  query  for an 
image  from  the  Mars  Global  Surveyor mission 
arrives  at  the  node  from  the  API. A candidate 
PDS  resource is then  identified  by  searching  the 
resource  profile  database.  The  query  system will 
subsequently  use  a  PDS  product  delivery  service 
to  obtain  product  information  from  the  resource. 
Product  information  may  include  images,  time 
series  data,  or  simply  metadata  information.  The 
product  delivery  service  will be  described in a 
subsequent  section of the  paper. 

The  component  architecture  as  described  focuses 
on providing a framework  for  solving  complex 

Figure 3: Profile Service Node 

3 



integration problems  across heterogeneous  data 
systems.  It  addresses the issues of data  location, 
data  transformation,  and data exchange. The 
framework provides  a  scalable  architecture  that 
centers  around the use of metadata. It also 
allows  for data systems  to  continue to retain  their 
unique  attributes, yet plug  into an enterprise 
architecture  that  allows for the successful 
exchange of data  content through the  use  of 
XML. By using XML this  framework  is able to 
impose an inter-disciplinary  communication 
mechanism that  allows  for data to be shared and 
exchanged. 

111. Query Service 

The query component of the  framework  serves as 
the  starting point for  users  to  retrieve 
information  stored across distributed data nodes. 
The query  component's CORBA interface 
enables analysis tools to  have a  programmatic 
entry  point  for  entering  queries and retrieving 
results. In addition, we have  implemented a Java 
API that  wraps  the CORBA interface (a  C++ 
API  is  forthcoming). This enables  scientists and 
engineers  to develop their  own  data analysis 
tools  to access disparate data systems from a 
single API. As more data systems  are added to 
the  framework, existing tools  can access  the new 
systems with  no  changes.  Furthermore,  multiple 

user interfaces that access the  query  component 
are  possible. One  such interface  that we have 
developed is a  web  interface. The web  interface 
uses the Java API to give  scientists and engineers 
immediate  access to  data  systems  from any 
common  web  browser  without any programming 
or  knowledge of what data  systems to  search. 

The query  service  uses the  CORBA naming 
service  to  connect to a  profile  node. In general, 
searches will enter  the  directed  graph  at  the  root 
or  parent  node;  however,  the  query  service  can 
enter  and  search  at any  point in the graph. 
Profiles  must be registered in order to be 
searched. 

To execute  a  search,  the  query component 
assembles an XML  document  describing the 
characteristics of the  query. The  document 
includes  a  header  section  that describes metadata 
about the query,  such  as its  title,  description, data 
dictionary,  security type, and revision code. 
These elements  indicate to the query service  any 
characteristics,  versioning, or special  handling 
required by the query. Also included in the 
document are  preferences  on  the result, such as 
how the query  should propagate through the 
digraph, the maximum number of results, the 
query  itself, and a space  for results. For example, 
a  query  for  "TARGET-ID=MARS"  results in the 
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following  XML  document: 

<?ml v e r s i o n = " l . O " ? >  
<QUERY> 

<QUERY-ATTRIEUTES> 
~ I D > O o D T - ~ - Q U E R Y - V O . l < / I D >  
< T I T L E > O O D T - X N - Q U E R Y   E x a m p l e < / T I T L E >  
< D E S C z T h i s  query can be handled by P D S D I S < / D E S C >  
< T Y P E > Q U E R Y < / T Y P E >  
<STATUS-ID>ACTIVE</STATUS-ID> 
<SECURITY-TYPE>UNKNOWN</SECURITY-TYPE> 
<REVISION-NOTE>1999-12-12 JSH V l . O < / R E V I S I O N - N O T E >  

</DATA-DICTIONARY-ID> 
< D A T A ~ D I C T I O N A R Y ~ I D > O O D T ~ D A T A ~ S E T ~ V l . O  

< / Q U E R Y _ A T T R I E U T E S >  
<RESULT_MODE-ID>ATTRIBUTE</RESULT_MODE-ID> 
<PROPOGATION~TYPE~BROADCAST~/PROPOGATION~TYPE> 
<PROPCGATION~LEVELS>N/A</PROPOGATION~LEVELS~ 

< R E S U L T S > O < / R E S U L T S >  
~ M A X I " _ R E S u L T S > l O O ~ / ~ I ~ ~ R E S U L T S >  

<KWQ-STRING>DATA-SET-NAME=MARS</KWQ-STRING> 
<QUERY-SELECT-SET/> 
<QUERY-FROM-SET/> 
<QUERY-WHERE-SET/> 
cQUERY-RESULT-SET/> 

< / Q U E R Y >  

The query  service  "crawls"  through  multiple 
nodes  in  the  directed  graph of resource  systems 
automatically,  locating  additional  servers  that 
can  fulfill  a  request for a  particular  item  in  any 
number of datasets. The  query  service uses 
"spider"  objects  to  execute  queries on each 
profile's XML description.  The  spider objects 
are  part of the  scatter-gather  approach:  each 
object  can  run  in  its  own  thread of execution, 
maximizing  the  concurrency of multiple  nodes in 
the  system.  The  system  scatters  the  spiders 
across  nodes  and  gathers  their  results  as  they 
become  available. 

Figure 4 shows a  Unified  Modeling  Language 
(UML)  sequence  diagram  for  a  typical  search. In 
the  diagram,  objects  are  shown  across  the  top 
with  their  lifelines  dropping  down  as  time 
increases.  Rectangles  over  the  lifelines  depict 
when an object  is  active.  Solid  arrows  show 
method  calls  on an object,  while  dashed  arrows 
show  returns  from  those  calls. A user's  query 
triggers  the  action  at  the  Query  Server  object 
through  its  "execute  search"  method. The  Query 
Server  asks  its  root  Profile  Server  object  for any 
matches  to  the  query.  In  response,  the Profile 
Server  returns  three  possible  other  Profile 
Servers  that  could  contain  matches  (in  addition 
to any  dataset  matches it itself  has). 
Concurrently,  the  Query  Server  executes  the 
same  query  on  the  other  Profile  Servers.  As  each 
server  returns  more  information,  the  Query 
Server  may  query  yet  more  and  more  servers. 
Finally,  after  traversing  the  digraph  in  this  way, 
the  Query  Server  returns  the  search  results  in an 
XML  document. 

The  Java  programming  language  simplifies 
development  of  concurrent  programming  such  as 
that used  in the  query  component.  Java  includes 
built-in  keywords  and  library  classes  for 
threading.  However,  Sun's  marketing  phrase  for 
Java, "Write  Once,  Run  Anywhere,"  is  more 
hype  than  reality. In order  to  encourage 
implementations of Java  on  a  wide  variety of 
computer  hardware  and  operating  systems,  Sun 
underspecified  details of Java's  threading 
behavior. As a  result,  behavior of threaded 
programs  vary  from  implementation  to 
implementation.  Sometimes,  programs  hang 
(deadlock)  even  though  there  is  no  obvious 
deadlock in the code  as  implemented. 

The  query  service  experiences  such  hanging 
behavior.  When  running  in  a  Windows-based 
Java  environment,  multiple  concurrent  queries 
work  correctly  and  quickly.  But on a  Linux- 
based  environment,  multiple  threads  performing 
queries  hang  the  query  component.  Because  the 
scatter-gather  approach to  making  multiple 
concurrent  queries  is  far  more  efficient  than 
serially  querying  remote  nodes,  we  plan  on 
incorporating  a  deeper  investigation  of  the  code 
and  of  various Java virtual machines  for the 
Linux  platform. 

Since  the directed  graph of resource  systems  is 
not necessarily  acyclic,  the  query  component 
must  take care not to  re-query  profile  nodes it 
has  already  visited,  or  else it could  get  caught  in 
an  infinite  loop.  The  query  component  trivially 
prevents  this by tracking  a  set of profiles  it  has 
queried so far. 

Once  the  query  component's  spiders  have 
completed  their  tasks,  the  query  service 
assembles  the  results  into an XML  document. 
The user can access  the  results  document  directly 
or  it  can be  translated  into HTML  for 
presentation  within  a  web  browser.  In the web 
browser,  hyperlinks  and  additional  searches are 
set  up  automatically by the  translation  process 
that  enables  the  end  user  to  immediately  fetch 
products  or visit sites  that  contain  the  sought 
datasets. 

One  possible  extension  that we are considering 
for  the  query  service  is  to  make it available  via 
the HTTP standard.  This  would allow  HTML 
pages  to send XML  queries  through  the  resource 
location  service  and  render  results  directly  into 
the HTML  document  as  previously  mentioned. 
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IV.  Profile  Service 

Science  data  systems  contain  product results. 
Instruments  and  experiments  generate  results that 
are archived  into  heterogeneous data  systems. 
Unfortunately,  there  is no standard for  querying 
these  data  systems  for  their  content  and it makes 
locating data nearly  impossible.  Scientists  and 
researchers  are  currently  required to visit each 
data  system  independently  and  use  tools that are 
unique to the data  system in order to locate 
information.  The  profile  service that is  part of 
the  framework  uses  metadata’ to describe  a 
variety of information  about  data  resources that 
can  exist  within  a  distributed  data  environment. 
It refocuses  the  problem of interoperability  on 
metadata  development  and  enables 
interoperability  by  using  a  common  metadata 
interchange  language. 

The  purpose of an OODT profile is to provide  a 
resource  description,  or  metadata,  that  is 
sufficient to determine if the  resource  can  resolve 
a  query. It is  used  by the  OODT  resource 
location  service to identify  and  locate  resources 
within  the  digraph  and  subsequently  limit  the 
number of resources  that will have to consider 
the  query.  For  example,  within  a  space  sciences 
implementation of this  concept,  a  query  for 
images of Jupiter  taken  by  the  Hubble  Space 
Telescope  should  not  have to be  handled by the 
resource  maintaining  the  Mars  Global  Surveyor 
spacecraft  images of Mars.  A  profile  can  be 
defined  a  proper  subset of the  metadata  that 
describes  a  resource  and  as  stated  about, that is 
sufficient to determine  whether  the  resource 
could  resolve  a  query. 

The  OODT profile development  effort  had 
several  phases. The  first  phase  was to decide 
what  language  should  be  used to manage  the 
metadata.  Since  the  underlying  requirement  was 
the  need  for  a  common  interchange  language, we 
identified the  Extensible  Markup  Language 
(XML)  as  being  ideally  suited to the  problem. 
The  advantages of XML  include (1 )  superior 
expressiveness  to  HTML by  allowing 
information-structure  specifications, 
(2) simplicity  compared to SGML  in  use and 
syntax,  and (3) wide  acceptance  as  an  Electronic 

Metadata  is, literally, data  about  data,  or 
information  that  describes the  characteristics of 
data. For  example, 37.6 is  data.  The  fact that 
it’s a  measurement  of  a  body’s  temperature in 
Kelvins is metadata. 

Data  Interchange  (EDI)  standard.  However  the 
most  compelling  aspect of XML is that even 
though  it  can  be  used to  capture  metadata  by 
directly  mapping  data  elements to tags,  XML  can 
also  be  used  as  a  meta-language to define  a 
language.  This  allowed  us  to  develop  a  generic 
language  for  managing  metadata  from  any 
domain. 

The  second  phase of the profile development 
effort  was to develop  a  generic  structure  for 
capturing  metadata  for  resources  from  disparate 
domains. We used XML to define  the  XML 
Extensible  Profile  Language  (X2PL).  X2PL 
provides  both  a  means  for  capturing  resource 
attributes  as  well  as  a  language  for  capturing  the 
attributes of the  information  content  that  the 
resource  manages. The  Document  Type 
Definition  (DTD)  specification in Figure 5 
illustrates  the  basic  components of the  resource 
profile.  The  DTD  specification  consists of three 
sections:  the  profile  attributes,  resource 
attributes,  and  the  profile  elements.  We’re  using 
a  DTD  specification  since the  technology  is 
readily  understood  and  widely  supported. We 
will consider  more  powerful  specification 
mechanisms  such  as  XML-SCHEMA  once  they 
have  been  approved as  a standard by W3C. 

The  profile,  as  an  object  itself, is described in the 
profile  attributes  section  using  the  attributes 
shown.  The  ID  attribute  provides  a  system-wide 
unique  identifier  for  the profile instance.  The 
TITLE  and  DESC  attributes  provide  descriptions 
of the  profile,  with  the  TITLE  being  more  terse 
and  appropriate  for  frequent  display.  The  TYPE 
attribute,  defined  below,  identifies  a  subtype. 
The DATA-DICTIONARY-ID  attribute 
provides  the identifier of a  controlling  domain 
data  dictionary  and  contains  addition  information 
that might  not  be  appropriate at the  profile level. 
The CHILD-ID  and  PARENT-ID  attributes 
provide  the  identifiers of related  profiles  and 
allow  for  the  creation of a  hierarchy  of profiles. 

The  resource  description starts in the  second 
section of the  profile,  using  the  attributes  shown 
in figure 5. The RESOURCE-ID  and 
RESOURCE-TITLE  attributes are analogous to 
the profile ID and TITLE,  providing 
identification  and  descriptive  information.  The 
RESOURCE-DISCIPLINE  attribute  identifies 
the  discipline  within  which  the  resource  exists 
and is  taken  from  a  discipline  taxonomy.  For 
example,  planetary  science  is  a  discipline  within 
space  sciences  and itself consists of several 
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disciplines  such  as  Geosciences,  Planetary 
Plasma  Interactions,  and  Atmospheres. The 
RESOURCE-LOCATION-ID  and 
RESOURCE-MIME-TYPE  attributes  provide 
the  location of the  resource  and  the MIME type 
of the  resource’s  response,  respectively.  The 
RESOURCE-AGGREGATION  attribute 
indicates  the  data  aggregation  level  managed by 
the  resource. These levels  are GRANULE or 
individual data products, GRANULE+ or  data 
production  collections  (data  sets),  and 
GRANULE++ or  data  set  collections.  The 
RESOURCE-CLASS  attribute is used  to  locate 
the  resource  within  a  resource  taxonomy. 
Examples  are  PRODUCT-SERVER, 
PROFILE-SERVER,  CATALOG, 
INVENTORY, and  INTERFACE. 

OODT Profile Document Tvw Definition (Dm) 
<!ELEMENTPROFILES 
(PROFILE+)? 

<!ELEMENT  PROFILE 
(PROFILEATrRIBUTES, 

RESOURCE)> 

<!ELEMENT  RESOURCE 
(RESOURCE-AlTRlBUTES. 
PROFILE-ELEMENl”>S 

Figure 5: OODT DTD 

The profile  element  section  is  the  third  part of 
the  profile  and  provides  the  second  part of the 
resource  description by describing  the 
information  content  that  the  resource  manages. 
For  example,  within  the  planetary  science 
community,  the Planetary  Data  System  (PDS), 
maintains  the  Distributed  Inventory System 
(DIS),  an  inventory of all  science  data  sets  that 
have  been  archived in the  system.  Within  the 
inventory,  the  data  sets  are  indexed  on  the 
associated  spacecraft  instrument  and  target  body. 
The profile  element  section of a  resource  profile 
for  the DIS would  include  these  indexed 
attributes  as  data  elements.  Figure 6 shows  a 
portion of the  DIS  resource  profile. 

As  can  be  seen from Figure 5, each  data  element 
is  defined in the  profile  structure  using  meta- 
attributes  such  as  ELEMENT-NAME  and 
VALUE-INSTANCE.  The  data  elements 
defined in the  profile  element  section  are  specific 
to  the  discipline  identified in the 
RESOURCE-DISCIPLINE  and  are  also  defined 
in the  controlling  data  dictionary  referenced by 

DATA-DICTIONARY-ID. To maintain 
compliance with international  standards,  these 
meta-attributes  are  consistent  with  those  defined 
in the  Data  Entity  Dictionary  Specification 
Language (DEDSL) (2), and  are  briefly 
described  here. The  ELEMENT-NAME 
attribute  provides  a  unique  identifier  for  the  data 
element  definition in the  data  dictionary. The 
VALUE-SYNTAX  attribute  provides  the 
encoding  type  for  the  data  element. The 
VALUE-INSTANCE,  MINIMUM-VALUE, 
and  MAXIMUM-VALUE  attributes  provide 
either  preferred  values  for  enumerated  data  types 
or  the  upper  and  lower  bounds  for  numeric  data 
types. The  ELEMENT-MEANING  attribute 
provides  a  textual  description of the  data  element 
and  the  ELEMENT-ALIAS  attribute  identifies 
synonyms. 

The third  phase of the  profile development  effort 
focused  on  specializing  the  profile  to  meet  three 
slightly  different  sets  of  requirements.  As is 
apparent,  the  profile  element  section  is 
essentially  a  data  dictionary in that  it  provides 
data  element  definitions. Because of this  fact 
and the  need  to  reduce  complexity,  the  profile 
structure was specialized  to  into  three  subtypes: 
PROFILE,  DATA-DICTIONARY,  and 
INVENTORY. 

The  PROFILE  specialization  is  consistent with 
what has  been  described  above  and  is  used 
primarily  when  one  profile is required  for  one 
resource.  The  specialization  specifically  makes 
the  use of the  meta-attributes 
ELEMENT-MEANING  and 
ELEMENT-ALIAS  optional.  For  example, in 
Figure 6 PDS  DIS  attributes  from  the  planetary 
science  domain  are  defined  as data elements in 
the  profile  element  section.  Using  this 
information,  the  query  service  is  able  to 
determine  that  a  query  with  a  constraint of 
“TARGET-NAME = IDA”  could be sent  to  this 
resource.  Since  a common vocabulary is being 
used,  the  assumption  is  made  that  the  resource 
will be able  to  resolve  the  query. 

The next  specialization of the  profile  structure  is 
DATA-DICTIONARY.  For  a 
DATA-DICTIONARY,  the  profile  element 
section  defines  the  attributes of any  object 
managed by any  resource  in  the  domain, 
focusing  primarily  on  those  attributes  used  for 
indexing.  In  addition,  the  meta-attributes 
ELEMENT-ALIAS  and 
ELEMENT-MEANING  are  considered  more 
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<PROFILE 

<RESOURCE> 
<RESOURCE_ATTRIBUTES> 

<RESOURCEUD>  PDS_MGS_MOC_IMAGE_nnn  </RESOURCE_ID> 

</RESOURCE_A1TRIBUTES> 

<PROFILE  ELEMENT, 
<ELEME~T-NAME> TARGET-NAME </ELEMENT_NAME> 
<VALUE_INSTANCE>  MARS  JVALUE_INSTANCE> 

</PROFILE-ELEMENT, 

<PROFILE_ELEMENT> 
<ELEMENT-NAME,  INSTRUMENT_HOST_ID  dELEMENT_NAMEs 
cVALUE_INSTANCE>  MGS  &ALUE-INSTANCE> 

</PROFILE_ELEMENT> 

cPROFILE_ELEMENT> 
<ELEMENT-NAME>  INSTRUMENLID  </ELEMENTNAME> 
<VALUE_INSTANCE>  MOC  JVALUE_INSTANCE> 

dPROFILE_ELEMENT> 

Figure 6:  Example Profile 

significant  and  the  preferred  values,  for  any 
enumerated  types  are the union of all preferred 
values  over  the  domain.  For  example, in the  data 
dictionary  for  the  planetary  science  community, 
the  TARGET-NAME data  element  would  have 
names of all planets,  satellites,  comets,  and 
asteroids  for  values of VALUE-INSTANCE. 

The final specialization of the  profile  structure  is 
the  INVENTORY.  This  profile  subtype  is  a 
slight variation  on PROFILE and  is  used  when 
one profile structure  is  used  to  describe  many 
resources.  For  example, one  INVENTORY 
could  be  used to profile all the  Mars  Global 
Surveyor  images of Mars.  This  specialization 
minimizes  space  by  requiring  only  one  set of 
profile attributes  and by reducing  the  number of 
required  meta-attributes. For  example,  there  is  no 
need to provide  the  ELEMENT-MEANING  for 
TARGET-NAME for  each  image. 

Additionally,  the  preferred  values of data 
elements are also  constrained.  For  example,  the 
values of TARGET-NAME for any  image in 
this  data  set  would  have  a  single  valid  value of 
MARS.  Figure 7 illustrates  a  portion of  an 
INVENTORY  profile  for  one  such  image. 

The final phase of the  profile  development  effort 
involves  implementing  instances  of profiles for 
specific domains.  As  is  evident,  the  success of 
the  distributed  resource  location  concept  is 
dependent  on  the  existence of domain  metadata 
captured in repositories  such  as  data  (element) 
dictionaries.  Within  such  privileged  domains,  the 
registration of resources  with  the  service  is 
readily  accomplished  by  extracting  the  necessary 

metadata  from  the  domain’s  metadata  repository, 
creating  the  resource  profile,  and  then  registering 
the  profile  with  the  service.  This  enables  the 
successful  location of resources  within  a  domain, 
possible  location of resources  across  domains, 
and  even  raises  the  possibility of resource 
interoperability. 

The  PDS  resource profiles shown in Figures 6 
and 7 were  generated  by  extracting  metadata 
from  the  PDS DIS.  Metadata  from  other 
disciplines  have  been  selected  from relational 

Prdile Example - PDS Distributed Inventory System 

<PROFILE PROFILE ID-”PROFILE  PDS  DIS W 3n”z  
- ”  

< P R O F I L E A T T R I B ~ T E S ,  
*ID> PROFILE-PDS-DIS-W 3 n 4 D I  
<TITLE> PlanetwData  SWem  -D&?nbutsdlnvertw System - P r o s e  Vi 0 . .  
.DESCIThispolkOesribestkPlaretaryDstaSysten(PDS)adnbr(ed 
cTWE,PROFILE  +(IWE> 
cDATA-DICTIOWRYJD, OODT-PDS-DATA_sET~DD_W 0 .. 

&ROFlLE-ATTRlWTES> 

<RESOURCE> 
+RESOURCE-ATTRIBIJTES> 

<RESOURCEjDrPDS-DIS_W 3n cRESOURCElDr  
~RESOURCE_TITLE,PlarrtaryDdaS~an - D l s i n M e d l n ~ n l c r y S y d e m  
&ESOURCE MSCIPLINEI PDS  cRESOURCE DISCIPUNE, 
&ESOURCE%3REGATIONs   GRPNUE+  ~R~5ouRCE~nOOREGATION~ 
&ESWRCE_CLASSr INVENTORY +RESOURCELL&Sr  
~ E S O U R C E ~ L O C A T l O N J D r  mp I@jsjpl n a s a p W b r 0 ~ 1 6 M m  
~?ESULT_MIME_TWEI tertMml rREWLT_MIME-TWE, 

cRES0URCEATTRIBUTESa 

Figure 7: PDS DIS Profile 

catalogs  and  gleaned  from  discipline  data 
models. 

The  successful  location of and  supporting 
interoperability  between  resources  from  different 
domains  is  strongly  dependent on  metadata 
compatibility,  or  how  well  the  metadata  spans 
the  domains.  For  example,  two  related  domains 
such as  planetary  science  and  astrophysics  both 
associate  one  or  more  target  bodies  with  most 
data  products.  However,  unless  the  same 
identifiers are used  for  a specific target  or  a 
mapping  between  identifiers  is  determined,  the 
attribute will not  support  resource  location  much 
less interoperability  across  the  domains.  In  fact 
as more  sophisticated  interoperability  such as 
data  transformation  and  correlation  is  requested, 
deeper  levels of metadata  compatibility will be 
required.  For  example,  once  a  target  body  is 
identified,  sufficient  metadata  must  be  available 
for  coordinate  system  conversion. 

The  resource  location  service profile is  currently 
being  augmented  to  handle  relationships.  For 
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example,  within  the  planetary  science  model, a 
data  set  entity  is related to a spacecraft 
instrument  entity  through a many-to-many 
relationship. To describe  a  relationship,  the 
following  meta-attributes  are  being  considered 
for  addition to the profile element  section. 
RELATION-NAME will provide a domain 
unique  identifier  for  the  relationship, 
RELATIONELEMENT-NAME will identify 
the  related data  element,  and  RELATION-TYPE 
will provide  the  relationship  classification.  This 
augmentation will allow  additional  query 
constraints  for  resource  profile  selection. 

The  profile, as a set of resource  attributes,  lends 
itself in  an interesting  way to the  task of 
distributed  resource  location  across 
heterogeneous  domains.  When  considered  from 
an  object-oriented  perspective, a resource  has 
three  modes.  These are (1) the  description of the 
resource as represented  by  the  resource’s 
attribute values, (2) the  instance of the  resource 
which  is  obtained  by  dereferencing the value of 
the  resource’s  location  attribute,  and (3) the  class 
definition as represented by the list of resource 
attributes and data  elements in the  profile 
element  section. 

Within  the  resource  location  service, a query  can 
be  made  for  any of the three  modes.  For 
example,  the  primary  role of a profile  is to 
provide  the  location of a candidate  resource that 
can  resolve a user  query.  Once  identified, a 
resource  attribute, 
RESOURCE-LOCATION-ID,  is  returned. Of 
course,  any  other  resource  attributes  such as 
RESOURCE-TITLE  can  also  be  return.  As 
mentioned,  the  instance of a resource  is  obtained 
by  de-referencing  the  value of the 
RESOURCE-LOCATION-ID attribute. If a 
resource  profile  describes  an  HTML  interface, 
the  query  could  return the actual  html  page  by 
performing a redirection  on  the  value of 
RESOURCE-LOCATION-ID.  Finally,  the  class 
definition of a resource  can  be  returned  and  used 
to  determine  how  the  class of resources  could  be 
queried,  even  to  the  extent of dynamically 
creating a query  interface  for  display to a user. 

When  using  metadata to enable  interoperability 
between  domains,  the  hard  problem of finding 
metadata  commonalities  across  domains arises. 
This  typically  involves  identifying  similar 
attributes, determining  core  concepts,  possibly 

generalizing  the  concept,  and  determining  the 
key  name  and aliases. The  resource  location 
service  has started to  address this problem 
through  the  use of the  data  dictionary 
specialization  and  the  use of the  meta-attribute 
ELEMENT-ALIAS . . 

The  OODT task is keeping  abreast of research in 
the area of metadata  development  and 
management  including  the  development  of 
thesauri,  ontologies,  terminology  bases,  meta- 
attribute  standards,  and  tools  for  metadata 
management. In particular  the  concept of 
terminological  ontologies [2] is  being  considered 
as a more  robust  solution  for  managing  metadata 
commonalities  than  the  simple  determination  of 
data  element  aliases.  Simply,  this  approach 
focuses  on  determining  the  underlying  concept 
with data  element  names  and  other  attributes 
managed as concept attributes. 

V. Product  Service 

The  product  service  component,  like  the profile 
component,  is  instantiated as a node in the 
distributed  architecture  and  provides  the 
capability to return  data  system  products  based 
on a query.  This  allows  each  data  system to 
maintain  heterogeneous  implementations,  but 
still integrate  into  the  enterprise  architecture. 

Each  product  server  node  provides  the  data 
access to one or  more  data  systems.  A  product 
server  node  instantiates a Java-based  server that 
integrates  with  the  query  service  and  receives 
XML-based  queries  using  the  XML  query 
structure  explained in Section I11 as part of the 
Query  Service.  The  product  server  framework 
that is  provided  is a generic  Java-based  server 
that dynamically  loads  query  handlers  defined 
and  registered  with  the  service. Once a query  is 
received  by  the  framework  it  then  notifies  each 
registered  query  handler as a separate  thread 
managed  by  the  product server. This  allows  the 
product  server to time  out  queries  to  resources 
which  may  not  be  available. The  product  server 
then  packages  the  results  from  each  query 
handler  and  returns  the  results  using  the  XML- 
defined  query  definition.  These  results are then 
passed  back to the  Query  Service  which 
integrates all the  results  from  the  distributed 
product  servers. 
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Found 4 matcher. 
1 .  Planetary  Data  System.  Distributed  Inventory  System 
Element  Matches 42 
Element Name DATA-SET-NAME 

~qp,&& ] INVENTORY 

:wp*y 1 

2. VOlNO2 MARS  VISUAL IMAGING S S  EXPRMNT DATA REC  BROWSE DATA 
V20 
Element  Matches 1 
Element  Name DATA-SET-NAME 

0 1 / V o 2  RAPS V I S U A L  IIIAGING S S  EXPRUNT  DATA REC BROPSE V 2 . 0  

3. OODT Planetary  Data  System DATA-SET  Data  Dictionary Version 1.0 W&pmT$e 1 DICTIONARY 
Element  Matches 42 
Element Name DATA-SET-NAME Y t e r * P r o Y l #  I 
AXES B A R 5  GENERAL CIRCULATION KODEL 5 L A 1  LON V A R I A B L E S   V l . 0 '  
AXES M l P S  GENERAL CIRCULATION EODEL 5 L A 1  P R E S   V A R I A B L E   V 1 . 0  
AMES nARS GENERAL CIRCULATION XODEL 5 L A 1  TIME V A R I A B L E   V 1 . 0  
AnES IIAP.5 GENERAL CIRCULATION MODEL 5 L A 1  VARIABLES V 1 . 0  

4. P D S  Mars Geoscience  Navigator 
Element  Matches 5 
Element Name DATA-SET-NAME "", 

L, I , _ j  , ,  ,,f "W#jw& INTERFACE 

1 / V 0 2  KARS VISUAL  IKAGING S S  EXPRUNT DATA REC BROWSE V 2 . 0  * 
Ol/VOZ MARS VISUAL  IMAGING 5% EXPRK!iT DATA RECORD V2.0 

l f V 0 2  I A R S  V I S U A L  IIAGTNG SUBSYSTIII DIGITAL TERRAIN KODEL 3 
0 1 / v 0 2  RAPS VISUAL IIIAGING S u B s Y s T E n  DIGITAL I ~ A G I N G  MODEL 

Figure 8 demonstrates  a  query  transaction  which 
returns  a  list of products  that are available  from 
various  product  servers. 

Query  handlers  provide  a  wrapper  around  each 
data  system  interface.  This  abstracts  the  data 
system  away  from  the  enterprise  and  allows  the 
query  handlers  to  function  as  a  translation 
service.  Developers  implement  query  handlers 
using Java's type  model,  which  separates  types 
from  classes  using  interfaces3.  The  query 

An  interface  in  Java  is  a  specification  for  the 
methods of a  class. A class  that  implements  a 
named  interface  must  provide  a  definition for 
each  method  specified  by  interface  or  else  be 
marked  as  an  abstract  class. 

component  specifies  a  standard  Java  interface  to 
which  query  handles  must  conform.  Developers 
creating  query  handlers  define  classes  that 
implement  the  query  handler  interface  allowing 
the  product  framework  to  communicate  with  the 
query  handlers. 

The  query  handlers  are  loaded by  the  product 
server  and  passed  the XML query. The  query 
handlers  transform  the  queries  into  the  system- 
dependent  query  language in order  to  access  the 
proprietary  interface. This  moves  the 
responsibility for  integrating  the  data-system- 
dependent  data  model  onto  the  data  system  and 
away from the OODT  data infrastructure. This is 
an important  design  consideration  for 
accommodating  scalability  in  a  larger  enterprise. 
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An example would be the JPL central PDS node. 
Implementation of a  query  handler  for this node 
requires  that  a  mapping  between  the  resource 
location  service  XML-based  query  and  the 
central node’s Sybase  RDBMS be implemented. 
The query  handler would then translate XML- 
based  queries  into  a  SQL-based  query 
referencing  the schema that  was  implemented by 
the PDS central  node.  This  then  provides  the 
core mapping  necessary to allow  unique data 
system  products to be retrieved from their  native 
environments. 

Once  products are  received by the query  handler 
they must be transformed  into  a  standard format 
that can  be exchanged. The  XML query 
structure defines the result format which  allows 
for data to be returned in various  formats. One 
of the requirements of this  architecture  is to 
provide  a  list of common interchange formats 
that  imposes  a set of standards  for 
interoperability. The challenge is to  provide  a 
simple set of common  formats for  images  and 
text, and require that  results  that  fit into these 
categories use these  formats  for  interchange. 
This would mean  that  all  images  that  are in  GIF 
may need to be converted  into JPEG if that was 
the  chosen format for  images. It is  important  to 
point out that  results  which do not fit  into a  these 
standards  can be returned in their  native  format. 
The goal  is  to  provide  flexibility in the 
architecture,  but  where  possible  promote 
standards  for  interoperability. 

Product  results  are  returned as ASCII  text, or 
base-64 encoding  depending on the data type. 
Base-64 encoding is used to return complex  data 
products  such  as images. In many cases  data 
systems may be  able  to return URL identifiers  to 
data as results,  rather  than  returning  the complex 
data product.  This  improves  performance by 
limiting the amount  of data transported  back  to 
the  client. 

The  product server  design  promotes 
interoperability by providing an interchange 
capability to  allow a common query mechanism 
to retrieve  products from unique data  system 
implementations. The design  presented allows 
distributed data system  nodes  to  maintain  their 
independence by providing  a  standard  product 
server  that can be extended  to  access  the 
distributed data systems. This design provides a 
scalable  solution by identifying  a  standard 
language for interoperability, and a framework 
for  extending that  interoperability to  each  data 

system.  It  also scales by pushing  the 
implementation requirements onto  each 
individual data system. 

VI. Conclusion  and  Future Work 

XML has gained in popularity for improving the 
ability  for  applications to  be integrated  through 
electronic data interchange. The resource 
location  service  presented in this paper uses 
XML for  data exchange and  metadata  definitions 
as part of its framework for  integrating 
distributed databases  across multiple  disciplines. 
This  solution  allows for loosely  related  data 
systems  to  remain  distributed,  while  providing  a 
content  management  and  interchange  capability 
for  locating  specific data products and resources 
archived  at  remote  locations. 

The resource  location service where  possible, 
promotes  the  use of open standards. This 
architecture will accommodate  changes  as  XML 
and standards  for  interoperability  evolve. 
Currently,  many  organizations  are looking at 
standards  for  electronic data interchange and 
queries  using XML.  At  time of writing  this 
paper  W3C has just published  a draft query 
language  for XML. 

Metadata is really provides the  foundation for 
our  solution. The solution  presented,  although 
applied to planetary,  astrophysics, and space 
science data  problems, is  not  limited to those 
disciplines.  In  fact,  the framework is  adaptable 
based  on  the  metadata  definitions  that are 
defined. This allows for the solution  to then be 
applied to other  disciplines  including  healthcare, 
defense, business, etc.  Currently, we are also 
investigating use of this  framework for  locating 
and correlating physiologic and  treatment  data 
from pediatric  research  hospitals  distributed 
across the United  States. The benefit of the 
architecture  is that it can easily  accommodate 
different  disciplines by refocusing  the  problem 
on  metadata  development. This  means that 
industry  and  disciplines  still  must decide on 
common  interchange language that  includes 
common  terms, data types, and formats. Once 
this common  language  is defined,  the  resource 
location  service provides the  infrastructure 
necessary for allowing  heterogeneous data 
systems  to communicate so that  advanced  data 
discovery and mining techniques  can be applied 
and new  relationships  discovered. 
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